
UCRL-SR-215372

Statement of Work for Studies in
BlueGene/L Scalability and
Reconfigurability

A. Henning, S. A. McKee

September 15, 2005

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

 This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Subcontract #: B539825 (LLNL/Cornell)
Statement of Work for Studies in BlueGene/L Scalability and Reconfigurability

Milestone 4: Fourth Quarter
September 5, 2005

Amy Henning and Sally A. McKee

As referenced in the subcontract, the work included three major goals: (1) study the
performance of an ASCI application, (2) study tradeoffs in using the second CPU in
coprocessor mode to optimize use of the L3 scratchpad memory for performing vector-
like gather/scatter and streamlining operations, and (3) perform simulator studies of
hardware phase detection and identification. We made some modifications to the work
contract. Work involving the integration of a cache-conscious data placement algorithm
to improve cache utilization on BlueGene/L has been added and work involving the L3
scratchpad memory has been eliminated. This was explained in the previous milestones.

In this milestone, we continue to focus on the last goal by modifying a cycle-accurate
simulator, sim-alpha [4]. As premise to hardware phase detection and identification, we
need to have an infrastructure for testing various cache-conscious data placement
methods. For this milestone, we discuss the completed framework that handles cache-
conscious placement optimizations, which includes profiling data accesses and handling
remapped addresses. We will also introduce an algorithm (ccdp profiling tool) that we
implemented for assigning remapped addresses for a given code. Our performance results
show that by using our ccdp profiling tool, we achieve reduced miss rates and an
improved overall simulation performance. For our test cases, we use four applications
from the SPEC CPU 2000 suite [2].

In our past milestones, we studied research that involves implementing cache-conscious
data placement techniques. By becoming more familiar with previous research, we can
make better decisions on designing our cache-conscious profiling tool. It is important to
have a firm understanding of the existing techniques that have proven to be efficient at
improving memory performance, since our tool will produce trace files as input to our
enhanced simulator framework.

1 Background

1.1 Previous Approach for Identifying Frequent Item sets

After researching Chilimbi and Hirzel’s Dynamic Hot Data Streams [3] technique, which
detects and prefetches frequently accessed data streams, we noticed that their algorithm is
somewhat limited when it comes to determining access patterns. Their streams are
composed of consecutively accessed data. A possible solution is to broaden the range of
frequent access patterns by placing fewer restrictions on the access patterns. Instead of
defining a stream to consist of only consecutive access, allow for a few interleaved
accesses as well. A possible solution is to apply an algorithm like sequential pattern
mining, which we discussed in previous milestones. In this section, we give a recap on
the idea and problems we encountered when trying to use these pattern mining tools.

The primary goal behind the sequential pattern mining methodology is to solve a problem
that involves examining an exponential number of subsequence patterns. It is a
challenging problem since it needs to examine a combinatorial, large number of
subsequence patterns. Pattern mining techniques can result in extremely long processing
time when mining the addresses in cache-access traces for highly memory-bound
applications.

There are a number of different algorithms that are developed to optimize this
challenging mining process. In general, mining methods adapt a multiple-pass, candidate-
generation-and-test approach. Many methods follow the Apriority-like methodology that
substantially reduces the working set (i.e., cache-access trace) being examined. The
formal definition states that when given a set of sequences, where each sequence consists
of a list of elements (i.e., set of addresses), and given a specified minimum support
constraint, the mining method will find all of the frequent subsequences that occur no less
than the minimum support constraint [7].

In order to allow for faster and more efficient processing, a refined method needs to be
utilized. For our initial efforts in finding the most frequent virtual addresses, we chose to
explore a sequential pattern mining method called PrefixSpan [7] that focuses on prefix-
projection. We initially chose this algorithm since we have a tool, referred to as a
frequent itemset tool that is readily available to us and simulates PrefixSpan. In the third
milestone, we conducted some experiments using this tool and provided some promising
results.

To give a quick overview of this algorithm, PrefixSpan mines the complete list of
frequent patterns but also reduces the size of projected databases. This leads to faster and
more efficient processing. The goal is to use a more scalable approach to mining.
Instead of considering all possible occurrences of frequent subsequences, the projection is
based only on frequent prefix subsequences since any frequent subsequence can be found
by growing a frequent prefix.

In theory, this approach seems sound. However, having further used the frequent item set
tool excessively for identifying frequent addresses in our cache-access traces, we

encountered a few problems. Although the tool follows the algorithm quite accurately, it
can only sample a small window of instructions at a time. The tool is not optimized to
handle a large database of addresses since it currently uses the entire footprint of a system
with a gigabyte of memory.

Even though the frequent items et tool allowed the user to specify constraints like gap
width (e.g., maximum number of addresses that can exist between items in a set,),
window slider width, and the amount it can slide, it did not identified closed sets which
posses another real problem. A single address from a trace would appear in multiple
sequences, which gives a false representation of a frequent item set.

Another tool we considered is a fast and memory efficient algorithm, DCI Closed [6],
which was recently presented at an IEEE Frequent Itemset Mining Implementations
Workshop. This algorithm focuses on our previous problem of duplicate detection of
frequent itemset. It first detects and discards these duplicate item sets and displays only
closed item sets.

Having tested their tool, it was clear that the algorithm demonstrates efficient memory
usage and was proven to be fast at generating results for large traces. We were able to
modify the tool to handle 64-bit addresses in order for it to read our alpha memory traces.
Unfortunately, we soon discovered that this tool was not going to be a helpful solution. It
does not account for addresses that occur within close proximity of each other. Thus, it
does not preserve temporal locality. This tool only detects closed item sets for an entire
trace, grouping addresses that appear very frequently but do not occur close together in
time.

In general, these sequential pattern mining algorithms do not seem to be an efficient
resource for detecting frequent addresses for our initial cache placement purposes. We
are most interested in preserving temporal locality for addresses in relation to other
addresses in a memory trace. The frequent itemset tool that simulated the PrefixSpan
approach seemed to have the most potential as a pattern mining tool for our research
purposes, but needs to be optimized to be more memory efficient and to detect closed
item sets.

1.2 Integrating Temporal Ordering Information

Having temporal locality information on the elements that are accessed around the same
time can be a powerful tool. Closely accessed elements can continuously evict each
other, causing the system to propagate many cache conflict misses. Being aware of these
particular elements can allow for better decisions to be made for data placement.

Temporal relationship graphs are useful in facilitating placement decisions. They are
weighted constraint graphs that contain nodes, which can be any element from a virtual
address to a procedure call, and edges, which represent the temporal relationship between
nodes. Thus, the higher the weighted edge values, the stronger the temporal
relationships. This type of temporal information is used in placement algorithms when

nodes are merged together to create a single linear representation of the most frequent
elements of the graph.

Gloy and Smith [5] devised a variation of a placement algorithm that uses temporal
relationship graphs. For purposes of procedure placement, these temporal relationship
graphs are defined for code-block granularity. Their algorithm uses the temporal
ordering information that is extracted from a profiler-generated trace, along with
instruction cache configuration and procedure sizes, to develop an efficient conflict cost
metric. This metric, which was later applied in Calder et al.'s CCDP algorithm [1], is used
to quantify an edge value for the graphs. With these edges and nodes set in the graphs,
techniques for merging the nodes into one single chain can then be applied. Nodes with
heavily weighted edges are used to place procedures in close proximity in the address
space.

Having researched this approach, we found it to be quite effective in finding the
frequently accessed addresses for our cache placement tool. It is unique to the properties
of a cache structure, unlike sequential pattern mining techniques, and can span a large
database of elements.

1.3 Approach Selected for CCDP Profiling Tool

In order to validate that our framework for sim-alpha is working properly, it is essential
to have a cache-conscious algorithm that will generate remapped addresses for the
simulator. Since we do not have access to any tools that automatically conduct cache-
conscious data placement techniques, we have to carefully study previous approaches
taken and develop our own tool. We looked at a number of previous cache-conscious
data placement algorithms and tools that can be used for finding frequent addresses. After
much trial-and-error, we decided to take a combination of a couple of approaches.

The cache-conscious data placement algorithm that we developed for testing our
framework closely follows the algorithm used by Calder et al. However, there are some
subtle modifications. When using the temporal relationship graphs to do data placement,
we assign the actual virtual addresses to be the nodes of the graphs. Calder et al. use
objects (variables) as nodes to the graphs as well as a customized version of malloc for
handling heap addresses. Since our framework for the simulator catalogs all of the
virtual addresses that are used by the level-one data cache, we do not have to detect the
addresses associated with heap objects. We use the low-level features of the simulator to
our advantage.

2 Framework Design and Setup

In this section, we describe the design and implementation of our cache-conscious data
placement framework for sim-alpha. This infrastructure is composed of three main
components. First, sim-alpha is modified to catalog all data accesses. Second, a CCDP
profiling tool is implemented to identify the temporal relationships of these accesses and
remap their virtual addresses to minimize cache misses. The data placement algorithm

used in this tool is based on the framework used by Calder et al. Third, sim-alpha is
further modified to properly initialize and use the remapped virtual address. The primary
goal of this design is to reduce the cache miss rate by remapping memory references in
the level-one data cache.

In the next two sections, we will discuss the first and third infrastructure components,
which are the actual modifications that are made to the simulator for gathering baseline
information that is pertinent to address remapping, and delivering the remapped
addresses.

2.1 Collecting Baseline Information

The first step in applying any cache-conscious data placement optimizations is to profile
to applications being run in the simulator. Profiling involves gathering all memory
accesses to the data cache and cataloging their associated reference types.

In the simulator, we need to identify the pipeline stages where accesses to the level-one
data cache occur. There are two stages in Sim-alpha where these accesses occur. In the
writeback stage, the dependent chain of completed instructions from the event queue,
which holds all instructions that are fetched and issued, are checked and marked “ready”
for processing. For our purposes, we are interested in what happens when a load or store
is picked from the event queue. From looking at the simulation code and documentation,
we discovered that within the writeback stage, load instructions access the data cache and
store instructions are marked as “ready” for accessing the data cache. Store instructions
will then access the data cache in the commit stage, where instructions are also retired
from the reorder buffer and the architectural register file is updated.

When the data cache is accessed from both these stages, a cache function is called. In
order to isolate the placement of our code in the simulator, we chose the cache function
location. Inside the cache function, we have added code to output the virtual address,
used by the data cache, to a file.

Along with extracting the virtual address, we also determine the reference type of this
address. We created a separate module, ccdp, for sim-alpha that holds all the functions
needed for our new framework. There are four reference types that our framework
recognizes: stack, constant, global, and heap. The ranges for these reference types can be
tracked inside the loader module, which naturally loads the program executable before
simulation begins. Static information, such as constants, global and initial stack data, is
placed in the virtual memory space at this point. There are important break points that
are assigned while the program is being loaded. We use these break points to determine
which type of data is associated with the addresses we profile.

After extracting all of the memory accesses of a given application and their type, we can
then use that as an input file to our cache-conscious data placement profiling tool.

2.2 Remapping Memory References

The second major feature of our framework is the remapping of memory references.
Given a list of virtual addresses and their remapped value, we can selectively remap
virtual addresses in the simulator.

Before simulation begins, a hash table needs to be created and initialized. Since there is
such a large number of addresses (264) that exist in the modeled machine, it is important
to implement a hash table to handle address lookups. All hash functions that initialize,
insert values, and retrieve values from the hash table are located in our ccdp module.

As programs run in the simulator, load and store instructions will be accessing the data
cache with their assigned virtual addresses. In order to integrate the remapped addresses,
we need to do the virtual address look-up at this same phase in the simulator.

In the cache access function, we perform a lookup in the hash table, which contains all
the virtual addresses we translated and their remapped values. Every time the cache
access function is called, we check to make sure it is performing a data cache lookup and
we check to see if the address exists in the hash table. If it does exist in the hash table,
we replace the old address value with the remapped address value. If the address is not in
hash table, then we just proceed with the original address.

A caveat of this method is that the remapped memory locations might not be properly
initialized. When first attempting to remap addresses in the simulator, one of the
remapped addresses would stall the simulator. The simulator would recognize the
remapped address as a bogus or misspeculated address. This was occurring since we had
not initialized the remapped addresses before running our test programs. Therefore, we
created another initialization function in the simulator to handle this problem. When the
program's executable is first loaded in the simulator, it copies the data to its virtual
memory space and in this process, that memory block is initialized. By calling our
initialization function after loading the program and before simulation, we resolved this
problem by copying the initial state into the remapped memory locations.

Once the simulator runs a program with our added remapping features enabled, the
simulator performs cache-conscious data placement. In the results section of this report,
we discuss some of the noticeable performance improves, which include reduced data
cache miss rates.

2.3 Cache-Conscious Data Placement Profiling Tool

To determine the most effective addresses for remapping, we need an efficient CCDP
tool to profile all the reference to the level-one data cache. These references were
gathered during a profile run of our modified simulator. In this section, we will explain
the algorithm that was designed to perform cache-conscious data placement and test the
remapping functionality of our simulation framework. In this section, we will explain the
procedures and functions used for our profiling tool.

Phase 1. Catalog All References:

Before using this tool, a file, which contains all the profiled data cache references and
their types, will need to be provided as input to the CCDP tool. This file is provided after
the first profile run of the simulator, which we discussed earlier.

The first step in our CCDP algorithm is to create and initialize a hash table that will hold
all of the addresses, their reference type, and a frequency counter. After initialization, the
input file is scanned and each address is looked up in the hash table. If the address is not
found in any of the entries, the address is added to the hash table. If the address does exist
in the hash table, then its frequency counter is incremented. The purpose of this hash
table is to catalog all references that were used in the simulator's data cache. This table is
then used to construct a constraint graph later.

Phase 2. Create Temporal Relationship Graph Structure:

Using the cataloged frequencies of each address in the hash table, a one dimensional
array with the top N most frequently accessed addresses is created, where the user
specifies N (default being 5,000). All of these addresses will then be entries in the
temporal relationship graph.

The temporal relationship graph is a weighted constraint graph with its nodes being the
most frequently accessed references, and its edges being their temporal relationship in the
data cache. When first constructing this graph, some data cache properties of the
simulator need to be considered.

To begin building the graph, we needed to know the number of addresses that will be
remapped and the size of the data cache, which is determined by multiplying the number
of sets, blocks, and words of the simulator. This cache size measurement is important
when estimating the temporal relationships of the addresses.

The graph structure is represented using a two-dimensional triangular array. Two copies
of the graph are created at this early phase. One is used as a reference to the original
graph and the other copy is a working graph, which is used to apply changes made after
nodes are merged.

Phase 3. Find Temporal Relationships:

After the graphs are constructed, we find the temporal relationships between all the
nodes. The method used was also used in Calder et al.'s algorithm and is referred to as
the cost conflict metric. The weights of an ordered set of recently referenced addresses
are maintained by a queue, which can grow to a maximum size no greater than two times
the size of the cache.

Using the given input file, the cost conflict metric processes one address at a time. When
an address is processed, the address is first inserted at the front of the queue to preserve
ordering of the program memory access patterns. Then the address is walked along the
queue until it finds a match or the end of is reached. If a match occurs, it is removed
from the queue and all the weights of the edges between this address and addresses
between the front of the queue and the match position are incremented. These weights
express the degree in which these accesses are interleaved.

Phase 4. Arrange References:

Once the entire trace file has been completely processed, the nodes of the graph need to
be arranged in a manner such that addresses with high temporal locality are adjacent to
one another. By merging each pair of nodes that share the highest weighted edge, we will
eventually be left with a single chain of accesses. A major programming consideration in
choosing two-dimensional arrays over more memory-efficient adjacency lists is the
complexity of this merging procedure.

When merging nodes, the working graph's edges are searched for the largest weight. The
pair of nodes that are associated with this edge are then merged into one single node and
the working graph is updated. This update can become a difficult process since we need
to keep careful track of the conditions and location of the nodes that surround the pair
being merged. When updating the graph, there may be instances where a node has edges
that connect to both the two nodes that are currently being merged. For this instance, the
weights of the common edges of the merged pair are summed after merging of the pair is
completed.

The process for merging nodes in the temporal relationship graph is complete when there
is only one node remaining in the graph. This single node is composed of an ordered list
of all the nodes in the original graph. This chain of addresses is now ready to be
remapped for cache placement.

Phase 5. Determining Cache Placement:

Using the user-specified configurations of the data cache, the final chain of addresses that
remain after merging is then broken up into contiguous chunks of addresses that are the
size of a cache line. This process apply to either direct-mapped or set associative caches.

Since we remap addresses by grouping reference types, four distinct sections of the
simulator’s virtual memory space are designated based on their type. Since the simulator
uses the bottom portion of memory, the top half (i.e., 0x1000000000000000 and up) is
solely used for remapped addresses that we assign with this tool. The top three bits of the
remapped address, will represent the type of reference being remapped, thus pointing to
four large partitions of the top half of the virtual memory.

2.4 Validating the Framework

To validate that our framework is functioning properly and producing correct results, we
ran a few microbenchmarks [4] that are provided with the Sim-alpha package. These
benchmarks test three architectural features of the simulator: the control flow, execution
core, and memory system. The level-one and level-two cache latency and the main
memory latency are evaluated in the memory system tests.

We first ran the microbenchmarks on the baseline simulator and collected all statistical
information including the output for the programs. With these statistics in hand, we then
can make direct comparisons to our framework version. Since there are two main
features to our framework, (1) collecting the original virtual addresses and (2) remapping
the addresses, we ran the microbenchmarks twice.

We checked such parameters as the total number of instructions that were executed and
committed and the total number of loads and stores issued. The statistical information
matched for both runs, and we also generated the same output for all benchmarks that did
not report timing measurements. The runs that gathered the original addresses had the
same latency measurements as the baseline simulator. For the runs that performed the
remapping, slightly reduced elapsed time and latency were displayed as well as an
increase in memory bandwidth, which is to be expected with applications that have fewer
cache misses.

3 Results

The default configurations in alpha.cfg and mem.cfg were used in our simulations. They
are supplied with the sim-alpha package. One major alteration was the data cache. We
modified it to be a direct-mapped cache with 1024 sets at 64 bytes per set. This is also
similar to the level-one data cache for BlueGene/L. An overview of the memory
configurations is listed in the table below.

Table 1: Sim-alpha Memory System Parameters

To simplify the workload, we used Simpoint to find phases of the codes that best
represent the execution behavior of the entire test programs. For our test cases, we
generated simpoints with a k-max of 30 and interval size of 10 million executed
instructions.

In order to run these individual simpoints, the simulator needs to be run using the fast
forwarding feature. This can be specified on the command line along with the interval of
instructions to skip and the simpoint where simulation will start. When running the
simulator with fast forwarding enabled, the simulator will skip all of the instructions up
to the simpoint. When it reaches the simpoint, the simulator starts executing the code
until the entire simpoint has been executed, which in our case is 10 million instructions.
All of the SPEC CPU benchmarks were profiled and remapped using simpoints with fast
forwarding enabled. We evaluate the entire benchmark by combining the statistics for
each of their simpoints and distributing them with their weight, which is given by the
Simpoint tool.

In this section, we present performance measurements for a direct-mapped data cache.
The graphs show our experimental results for the SPEC CPU 2000 gcc, equake, art, and
ammp. The first figure demonstrates the differences in miss rate between the baseline
and the remapped version of the simulator. The second figure shows the performance of
the simulator in elapsed time.

Figure 1: Sim-alpha L1 Data Cache Miss Rate

The results from both experiments show that by using a cache-conscious data placement
layout of the accesses to the level-one data cache, we can obtain better performance. It is
clear that when using a direct-mapped cache configuration, the system has a lower miss
rate when using cache-conscious data placement. There is a 9-90% decrease in miss rate
for these four test cases. Since each benchmark has its own distinct input data set and has
different execution behavior, our remapping tool will affect each benchmark differently.
Some benchmarks have more distinct access patterns that occur frequently, thus allowing
for better cache utilization when applying the remapped addresses. For the overall
performance of the simulator, there was a 14-33% improvement.

Figure 2: Sim-alpha Runtime Performance

4 Conclusions

This design project involved modifying a cycle-accurate simulator to perform cache-
conscious data placement optimizations and constructing a scheme for verifying its
correctness. Using such an optimization can potentially improve the cache performance
by reducing the number of cache misses.

In this design project, we were able to complete this framework. There are three major
components for the overall project. First, the sim-alpha simulator was modified to
catalog all data accesses. Second, a profiling tool was fully implemented to identify the
temporal relationships of these accesses and remap their virtual addresses to minimize
cache misses. Third, sim-alpha was further modified to properly initialize and use the
remapped virtual address.

 To verify that the framework was running properly, we used the same microbenchmark
suite that was used for verifying the correctness for sim-alpha simulator. Using this
benchmark suite, we successfully validated that the program output and simulations are
correct.

For our performance results, we used four applications from the SPEC CPU 2000
benchmark suite. We gathered statistics relevant for the level-one data cache miss rates as
well as the simulation elapsed time. For all statistics gathered, there was an improved for
all four of the benchmarks. For the miss rates, there was a decrease ranging from 9-90%
and for the simulation elapsed time, there was an overall speedup from 14-33%. From our
experiments, we show that using a cache-conscious data placement optimization can
improve system performance.

With this framework available, we can begin using the simulator to apply our studies of
phase detection. Other cache-conscious data placement algorithms can also be tested
using this framework.

Bibliography

[1] B. Calder, C. Krintz, S. John, and T. Austin. Cache-Conscious Data Placement. In
Proceedings of the 8th Symposium on Architectural Support for Programming
Languages and Operating Systems, pages 139–149, October 1998.

[2] J. F. Cantin and M. D. Hill. Cache Performance for SPEC CPU2000 Benchmarks.
http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data,
May 2003.

[3] T. Chilimbi and M. Hirzel. Dynamic Hot Data Stream Prefetching for General-
Purpose Programs. In Proceedings of the 2002 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 199–209, June 2002.

[4] R. Desikan, D. Burger, S. Keckler, and T. Austin. Sim-alpha: A Validated,
Execution-Driven Alpha 21264 Simulator. Technical Report TR-01-23, Department
of Computer Sciences, The University of Texas at Austin, 2001.

[5] N. Gloy and M.D. Smith. Procedure Placement Using Temporal-Ordering
Information. ACM Transactions on Programming Languages and Systems,
21(5):977–1027, 1999.

[6] C. Lucchese, S. Orlando, and R. Perego. DCI Closed: A Fast and Memory
Efficient Algorithm to Mine Frequent Closed Itemsets. In Proceedings of the
2004 IEEE ICDM Workshop on Frequent Itemset Mining Implementations,
November 2004.

[7] J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan:
Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. In
Proceedings of the 17th IEEE International Conference on Data Engineering,
pages 215–226, April 2001.

